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Abstract

In this paper the dependencies of wavelet coeÆcients along scales
are investigated and used for removing noise from degraded signals.
Wavelet coeÆcients are split into overlapping atoms, that correspond
to basic singularity points in the original signal. This model reduces
the redundancy of the wavelet representation in correspondence to sig-
ni�cant structures of the signal, while preserving correlation between
adjacent coeÆcients. Since, the atoms are de�ned both in time and
scale, it is possible to predict their evolution through scales via a �rst
order partial di�erential equation. The latter enables to compute the
trajectories of atoms global maxima in scale-space. The trajectories
are solutions of a non linear ordinary di�erential equation that allows
to precisely link signi�cant wavelet coeÆcients at successive scales us-
ing general kernels. This results are successfully used for de-noising
corrupted signals, as shown by the experimental results.
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1 Introduction

Denoising is a widely investigated topic in Image Processing, as shown by the
variety of approaches that can be found in literature. It consists of recovering
a signal f from its noisy version g, where

g(t) = f(t) + �(t);

and � is an additive zero-mean gaussian noise with variance �2.
Most of the proposed approaches try to emphasize original signal prop-

erties by exploiting the correlation between the corresponding coeÆcients in
a suitable expansion basis. These correlations are more evident if a scale
space decomposition is used, for example the wavelet transform. In fact, it
allows the analysis of singularity points exploiting the lack of correlation of
the gaussian noise [7, 12, 14].

In [1, 2] is has been provided a model for further compacting wavelet co-
eÆcients information. The model attempts to reduce the redundancy of the
wavelet representation in correspondence to signi�cant structures of the sig-
nal, while preserving correlation between adjacent coeÆcients. This is possi-
ble by representing the wavelet transform of a signal by means of overlapping
atoms. The atoms correspond to basic singularity points in the original signal
and they are dependent on the wavelet basis. They can be discriminated at
each scale level independently by modelling their interference through scale.

Nonetheless, the wavelet transform reveals an intrinsic time-scale struc-
ture, as shown in Fig. 1.

In fact, there is a precise link between successive scales. This link has
been empirically exploited by de�ning the persistency property of wavelet co-
eÆcients [4]. A step forward has been done in investigating the wavelet trans-
form of signals having singularities of di�erent order. As shown in Chapter
1, the decay of modulus maxima of the wavelet transform gives a measure of
the kind of singularity within a given interval (cone of inuence). Nonethe-
less, it is diÆcult to build the modulus maxima chains along scales in a
deterministic way. In fact, modulus maxima can change their locations and
they can assume di�erent appearance whenever the cones of inuence of two
di�erent singularities intersect. For that reason, some empirical constraints
have to be used for building the chain, such as the persistency of the sign and
the de�nition of one global maximum in the cone of inuence [12, 14]. This
leads to some false alarms or the missing of some important information. In
Fig. 3 there is an example. It depicts two interfering singularities. In this
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Figure 1: Top) Signal having di�erent kinds of singularity. Bottom) Its wavelet
transform at di�erent scales.
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case, since the two cones of inuence intersect, only the two highest modulus
maxima are wrongly selected. Moreover, once modulus maxima have been
detected, we need an algorithm for reconstructing the signal from them. The
maxima projection algorithm proposed in [14] is useful but it has three main
drawbacks:

� it could not converge to the original signal (Mallat counterexample in
[10]);

� the convergence of the algorithm requires a minimum distance between
two successive maxima [14];

� maxima chains are guaranteed for each scale s only using wavelets
which are derivative of a gaussian kernel (see Chapter VI of [11]).

These drawbacks can be solved by further characterize each modulus
maximum. A �rst attempt has been done by Dragotti and Vetterli in [7],
who tried to exactly model piecewise polynomial signals. Nonetheless, also in
this case the distance between two adjacent singularities becomes important
for distinguishing them. In other words, when two singularities interfere,
footprints are not able to discriminate them.

The main contribution of this work consists of providing the trajectories
of signi�cant modulus maxima of the wavelet transform, Wf(u; s), of a sig-
nal f in a theoretical and almost precise manner. These trajectories model
the evolution law of some prede�ned basic atoms whose superimposition ap-
proximates Wf(u; s). For each atom, the signi�cant maximum is the one
having the greatest amplitude (see Fig. 2). A signi�cant maximum does
not disappear along scales but it moves from its initial location whenever its
relative atom interferes with an adjacent one. In the case of complete inter-
ference the two atoms can generate an only one maximum which takes into
account both contributions (see Fig. 4). Using this representation, we can
say that signi�cant modulus maxima characterize the atomic decomposition
of the wavelet transform. Notice that the latter gives only an approximation
of a signal and not its perfect reconstruction, as shown in [1, 2].

The outline of the paper is the following. In Section 2 a pde for Wf(u; s)
is written both in the general case and for a single atom. Section 3 provides
the equations of modulus maxima chains and generalizes the atom for mod-
elling the decay of singularities of di�erent order. Section 4 shows how these
evolution laws can be exploited in denoising while some experimental results
and comparative studies are presented in the last Section.
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Figure 2: Basic atom computed at a �xed scale s and using the spline biorthogonal
wavelet 3/9 [1, 2].
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Figure 3: Two interfering atoms make a spurious maximum inside their cones
of inuence: a) wavelet transform composed of two atoms having the same sign,
whose maxima are indicated by arrows; b) modulus of the wavelet transform: the
longer arrow indicates the spurious modulus maximum that should be selected in
place of the real rightmost one, following the classical procedure [12] .
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Figure 4: Topmost �gure depicts a signal having two singularity points at t1 and
t2. Below there is its corresponding wavelet transform computed at successive
scales s = fs1; : : : ; s6g. It is composed of two atoms having the same sign which
interfere as long as the scale increases.
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2 Scale dependencies in the atomic represen-

tation

Let  be a real and continuous wavelet and let us suppose that its �rst
derivative is de�ned. The function  (u; s) is obtained by scaling and dilating
 by a factor s, i.e.

 (u; s) =
1p
s
 
�
�u
s

�
; (1)

where s 2 R+ and u 2 R. Therefore, its partial derivatives with respect
to the variables s and u are:

 s = � 1

2s
p
s
 
�
�u
s

�
+

u

s2
p
s
 0
�
�u
s

�

 u = � 1

s
p
s
 0
�
�u
s

�
:

Hence, by comparing  s and  u, we have

 s =
�
�u
s
 
�
u
+

1

2s
 : (2)

It is a �rst order, non homogeneous and semi-linear partial di�erential equa-
tion and represents the evolution law through scales for  [8]. Let us re-
mind that the wavelet transform of a generic function f by using the mother
wavelet  is

Wf(u; s) = f �  =
1p
s

Z +1

�1
f(t) 

�
t� u

s

�
dt:

To simplify the notation, in this sectionWf(u; s) will be simply indicated
with w(u; s).

Therefore, by convolving both members of (2) with a generic function f ,
we achieve:

f �  s = f �
�
�u
s
 
�
u
+

1

2s
f �  

and by using the property of the convolution with respect to the deriva-
tive1 it follows:

ws =
�
f � (�u

s
 )
�
u
+

1

2s
w: (3)

1f � g(t) = g � f(t); d
dt
(f � g)(t) = df

dt
� g(t) = f �

dg
dt
(t)
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Using simple computation eq. (3) can be rewritten as follows

ws = �u
s
wu � 1

2s
w +

1

s
vu; (4)

where v is the wavelet transform of the function tf(t). This equation
shows two di�erent e�ects. The �rst term after equal, i.e. �u

s
wu, guides a sort

of transport along the scale s. The second and third terms, i.e. � 1
2s
w+ 1

s
vu,

are source terms and guide the decay and the shape of the wavelet transform
along scales.

It is worth outlining that equation (3) is a more general result than the
one in [11], since we did not make any assumption about the function f or
the kernel  . In fact, as stated in [11], if  is the nth order derivative of a
gaussian kernel �(t), i.e.  (t) = (�1)n�(n)(t), then the function � = 1p

s
f (n)��

satis�es the heat equation:

�s =
1

2s
�uu: (5)

We will now prove that assuming  (t) = (�1)n�(n)(t), (5) derives from
(3).

Proposition 1 Let  (t) = (�1)n�(n)(t), where � is a gaussian kernel, then
(3) implies (5).

Proof:
From (1) we have  (t; s) = sn @n

@tn
�(t; s) and then w(u; s) = snf (n) � �(u).

It is trivial to verify that if �(t) = e�t
2

, then

�(n+1)(t) = �2t�(n)(t)� 2n�(n�1)(t); 8 n 2 N; n 6= 0: (6)

Hence, for  = (�1)n�(n)(t), the equation (3) becomes

�
snf (n) � �(u)

�
s
= �

�
f � u

s
sn�

(n)
(u)

�
u
+

1

2s
(snf (n) � �(u)) (7)

By computing the derivative with respect to s in the �rst member of (7)
and using (6) in the �rst term of the second member of (7), we have

sn
�
f (n) � �(u)

�
s
+ nsn�1[f (n) � �(u)] = sn�1

2

�
f � �(n+1)(u))

�
u
+
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+
sn�1

2
(f � 2n�(n�1)(u))u + 1

2s
(snf (n) � �(u)):

Using the property of convolution, it follows

sn
�
f (n) � �(u)

�
s
+ nsn�1[f (n) � �(u)] = sn�1

2

�
f � �(n)(u))

�
uu
+

+
sn�1

2
2n(f � �(n)(u)) + 1

2s
(snf (n) � �(u)):

Let us now divide both members by sn�1
p
s, hence

sp
s

�
f (n) � �(u)

�
s
=

1

2
p
s

�
f (n) � �(u)

�
uu

+
s

2s
p
s
(f (n) � �(u)): (8)

Since
�

1p
s
f (n) � �(u)

�
s
= � 1

2s
p
s
(f (n) � �(u)) + 1p

s

�
f (n) � �(u)

�
s
,

eq. (8) becomes

s

 
1p
s
f (n) � �(u)

!
s

+
s

2s
p
s
(f (n)��(u)) = 1

2
p
s

�
f (n) � �(u)

�
uu
+

s

2s
p
s
(f (n)��(u))

and then  
1p
s
f (n) � �(u)

!
s

=
1

2s

 
1p
s
f (n) � �

!
uu

;

that is

�s =
1

2s
�uu:

�

Although the generality of the result, the equation (3) is still unuseful in
this form since we have not a priori information about the function f . In
the following section, it will be shown how (3) changes by using the atomic
representation proposed in [1, 2].
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3 Evolution laws for wavelet atoms

Let us now to simplify the problem by using the atomic decomposition for the
wavelet transform of f . We start with the case of an in�nite ramp function
and compute the source term vu in (4).

Let f(t) be

f(t) =

(
� t < t0
�1(t� t0) + � t � t0

(9)

and k(t) = tf(t), i.e.

k(t) =

(
�t t < t0
�1(t

2 � t0t) + �t t � t0.
(10)

Then,
w(u; s) = �1F (t0; u; s);

where

F (t0; u; s) = s
p
s

 Z b

( t0�u
s )

t (t)dt�
�
t0 � u

s

�Z b

( t0�u
s )

 (t)dt

!
(11)

is the basic atom centered at t0, and

v(u; s) =
1p
s

Z u+sb

u+sa
tf(t) �

�
t� u

s

�
dt =

=
1p
s

Z t0

u+sa
�t 

�
t� u

s

�
dt+

1p
s

Z u+sb

t0
(�1(t

2 � t0t) + �t) 
�
t� u

s

�
dt =

= �s
p
s
Z b

a
y (y)dy� �1u

p
s(t0 � u)

Z b

t0�u

s

 (y)dy+

+�1s
2
p
s
Z b

t0�u

s

y2 (y)dy� �1s
p
s(t0 � 2u)

Z b

t0�u

s

y (y)dy;

where the change of variable y = t�u
s

and the zero mean property of  
have been used.

Hence, the partial derivative of v(u; s) with respect to u is
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vu = ��1
p
s(t0 � 2u)

Z b

t0�u

s

 (y)dy � �1
p
s(t0u� u2)

1

s
 
�
t0 � u

s

�
+

+�1s
2
p
s
1

s

�
t0 � u

s

�2
 
�
t0 � u

s

�
+ 2�1s

p
s
Z b

t0�u

s

y (y)dy+

��1s
p
s(t0 � 2u)

1

s

�
t0 � u

s

�
 
�
t0 � u

s

�
:

By summing equal terms we get

vu = ��1
p
st0

Z b

t0�u

s

 (y)dy + �1
p
s2u

Z b

t0�u

s

 (y)dy + 2�1s
p
s
Z b

t0�u

s

y (y)dy:

By adding and subtracting the quantity �1
p
st0

R b
t0�u

s

 (y)dy and compar-

ing the result with (11), it holds

vu = 2�1s
p
s

(Z b

t0�u

s

y (y)dy�
�
t0 � u

s

� Z b

t0�u

s

 (y)dy

)
+�1t0

p
s
Z b

t0�u

s

 (y)dy =

= 2�1F (t0; u; s) + �1t0
p
s
Z b

t0�u

s

 (y)dy = 2w + �1t0
p
s
Z b

t0�u

s

 (y)dy:

Since wu = �1
p
s
R b
t0�u

s

 (y)dy, then

vu = 2w + t0wu: (12)

Putting (12) in (4), we achieve the evolution law for the isolated atom
�1F (t0; u; s):

ws =
t0 � u

s
wu +

3

2s
w: (13)

This equation is more tractable than the general one (4). In fact, it
is semi-linear and the inhomogeneous term is aÆne with respect to w [8].
Hence, we can study its characteristic curves.

We want to �nd the projection of the solution of (13) onto the parametric
curves 8><

>:
s = s(�)
u = u(�)
w = w(s(�); u(�))

(14)
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where � 2 R. Since d
d�
w = ws

d
d�
s+wu

d
d�
u, from (13) we derive w(s(�); u(�))

as the solution of the following ordinary di�erential equation:

d

d�
w =

3

2s
w (15)

if and only if

(
d
d�
s = 1

d
d�
u = � t0�u

s

By solving both equations using the separation of variables, it follows:

(
s = �
log(t0 � u) = log(C0�):

Hence
u(s) = t0 � C0s;

where C0 is the initial condition at scale s = 1, i.e C0 = t0 � u(1).
Summing up, the characteristic curves of (13) are straight lines, as shown

in Fig. 5, whose equations are:

u(s) = t0 � (t0 � u(1))s: (16)

They are continuous curves and provide the trajectory of all the wavelet
coeÆcients composing the atom in the scale-space domain.

It means that a single atom travels through scales without moving from
its original position. The two only e�ects that modify its shape are tied to
the terms on the right side of (13). The �rst one is transport: the atom
becomes wider along scales. The second one is a source term. The atom
amplitude is higher along scales (O(s3=2)) in agreement with the theorem of
Ja�ard (Theorem 6.4 in [11]). These two e�ects are shown in Fig. 6.

In Section 2.4, we stated that each atom can be characterized by its
modulus maxima. In particular, we saw that each atom is centered at location
tk. Choosing a symmetric wavelet, tk corresponds to the atom center of mass
that for the shape in Fig. 2, coincides with the global maximum location, i.e.
its mid point. Whenever singularities can be detected by means of modulus
maxima of their corresponding atom, it is possible to provide the trajectories
of those maxima along scales. This is a crucial result since it gives a precise
rule for constructing signi�cant maxima chains in the wavelet domain.
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Figure 5: Characteristic curves of (13).

Let us compute the derivative with respect to u of both members of eq.
(13) at critical points, i.e. wu(s; u(s)) = 0. Hence

wsu =
�
t0 � u

s

�
wuu: (17)

On the other hand, along atom extrema chains u = u(s) we have:

((w(s; u(s))u)s = 0

i.e.,

wsu + wuu _u = 0; (18)

where with _u we indicate the derivative of u(s) with respect to s. By com-
paring (17) and (18) we have:

�wuu _u =
t0 � u

s
wuu:

13
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Figure 6: Black solid lines represent an isolated wavelet atom at increasing scales.
Its behavior accounts for both the di�usive and the source e�ect. The amplitudes
of global absolute maxima along scales belong to the curve s3=2 (dark gray solid
line). Light gray lines depict atoms absolute maxima trajectories.
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Since wuu(s; u(s)) 6= 0, it follows

_u = �t0 � u

s
: (19)

Hence, (19) gives the trajectories of all atom extrema of (11). Since we are
interested in following the global modulus maximum, we have to consider the
following initial condition u(1) = t0. Therefore the trajectory of the global
absolute maximum of (11) is

u(s) = t0; 8s 2 R+:

It follows that the global maximum of (11) does not move from its initial
location.

3.1 Trajectories for interfering atoms

Let us now try to generalize to a function f(t) having two singularity points,
like the one depicted in Fig. 4. In this case, (13) becomes:

ws =
t� u

s
wu +

3

2s
w +

d

2
p
s

�
�2

Z +1

z2
 (y)dy � �1

Z z1

�1
 (y)dy

�
(20)

with t = t1+t2
2

, fzk = tk�u
s
; k = 1; 2g and d = t2 � t1.

The corresponding maxima trajectories are:

_u = �t� u

s
� d

2s

 
�2 (z2) + �1 (z1)

�2 (z2)� �1 (z1)

!
: (21)

It can be seen that (21) di�ers from (19) in its last term. This latter
makes (21) non linear and describes how maxima generated by the two atoms
move along scales. While there is no interference, i.e. the two cones of
inuence do not overlap, the behavior of their trajectories is the one depicted
in Fig. 7 for s < s. The two atoms are independent of each other. They
are only constrained to the transport and source e�ects, but they do not
move from their initial position. This fact can be easily seen if we put
z2 62 suppf ( t1�us )g.  (z2) = 0 and then (21) trivially coincides with (19).

Once the two cones of inuence begin to overlap (s � s in Fig. 7),
each atom begins to be inuenced by the other one. In particular, the atom
with the greater amplitude has a stronger attractive force as it happens for
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Figure 7: Modulus maxima trajectories of two interfering atoms respectively cen-
tered at t1 an t2. They have the same sign but di�erent weights �1 and �2. In
particular j�1j > j�2j.
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Figure 8: Topmost �gure depicts a signal having two singularity points at t1 and
t2. Below there is its corresponding wavelet transform computed at successive
scales s = fs1; : : : ; s6g. It is composed of two atoms having opposite sign which
interfere as long as the scale increases.
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Figure 9: Modulus maxima trajectories of two interfering atoms respectively cen-
tered at t1 an t2. They have opposite sign and weights j�2j > j�1j.
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gravitation. The e�ect is shown in Fig. 7, where it can be seen that the
smaller atom has a greater deviation in its trajectory.

As stated in [1, 2], when the two atoms interfere there are two possibilities:

� The two atoms have the same sign (see Figs. 4 and 7). Maxima trajec-
tories apparently show �rst repulsion and then attraction. The repul-
sion e�ect is due to dilation of the shape caused by the di�usive e�ect
along with the fact that the atom is not a positive function over its
whole support. When the interference is complete, there is an only one
global maximum which keeps on travel as an isolated one till it meets
other atoms.

� The two atoms have opposite signs (see Figs. 8 and 9). The �nal shape
is depicted in Fig. 8. Maxima trajectories now apparently show �rst
attraction and then repulsion. Also in this case, this e�ect is due to
dilation of atoms caused by the di�usion and the non constant sign
of the atom in the corresponding domain. When interference is com-
plete, each atom independently travels along its characteristic curves
till future meetings.

The aforementioned examples show that the atoms evolution law is not
reversible. In fact, after the complete interference (s � ŝ in Figs. 7 and 9), it
is not possible to reconstruct atoms' history without additional information.
In other words, it is not possible to predict the state at scale ŝ� � from the
state at ŝ. If we have an atom at a given scale s, we can never say if it
corresponds to an isolated singularity or it is the composition of two or more
atoms.

Eq. (20) can be easily generalized to the case of a function with N
singularities, i.e. w(u; s) =

PN
k=1 �kF (tk; u; s). Hence,

ws =
t� u

s
wu +

3

2s
w +

1

Ns

NX
k=1

2
4w(k)

u

0
@ NX

j=1

dkj

1
A
3
5 ; (22)

with t =
P

N

k=1
tk

N
, dkj = tk � tj and w

(k)
u indicates the derivative with respect

to u of k�th atom, i.e. w(k)
u = �ps�ksign(�k)sign(w

(k)(tk))
R zk
�1  (y)dy.

It is trivial to show that (21) becomes:

_u = �t� u

s
� 1

Ns

PN
k=1w

(k)
uu

�PN
j=1 dkj

�
wuu

; (23)
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Figure 10: Modulus maxima trajectories of a signal having three singularity
points. Its wavelet transform is composed of three atoms having the same sign
located at t1 = 60, t2 = 64, t3 = 67 with slopes �1 = �8, �2 = �8, �3 = �10.

where w(k)
uu = � 1p

s
�ksign(�k)sign(w

(k)(tk)) (zk) and wuu =
PN

k=1w
(k)
uu .

This gives the equation of maxima chains along scales for the following
initial conditions:

uk(1) = tk; k = 1; : : : ; N;

where uk(s) is the trajectory of the kth atom (see two examples in Figs.
10 and 11 ).

We can now come back again on the example of Fig. 3. Keeping in
mind the atoms trajectory along scales, the spurious maximum will be never
selected. In other words, the evolution law allows us to precisely follow the
wavelet information, within the error produced by the atomic approximation.

3.2 About Lipschitz order of singularities

So far, an only atom shape has been used for representing every kind of
singularity. It is symmetric and corresponds to a piecewise linear function.
Atom maximum trajectory is exactly described by (19), while its amplitude
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Figure 11: Modulus maxima trajectories of a signal having six singularity points
respectively located at t1 = 60, t2 = 64, t3 = 67, t4 = 70, t5 = 75 and t6 = 78 with
slopes �1 = �8, �2 = 8, �3 = 10, �4 = �10, �5 = �6 and �6 = 6.

decay along scales is O(s3=2) (see Chapter 6 in [11]). If we now consider a
polynomial in�nite ramp of order  as in Fig. 12, we can see that it generates
an asymmetric atom. When it is isolated, i.e. there is no interference with
other atoms, its trajectory is described by (19). However, when it meets
another atom we have to expect that its trajectory deviates from that in
(21) since the asymmetry. Furthermore, if

f(t) =

(
� t > t0
�1(t� t0)

 + � t � t0

the evolution law becomes:

ws =
t� u

s
wu +

3

2s
w +

2( � 1)

2s
w:

It has an additional term which depends on the exponent , which charac-
terizes the singularity. It is obvious that this term also regulates the maxima
trajectories in case of interfering atoms, as shown in Fig. 13. It is well-known
that the amplitude of a wavelet modulus maximum is tied to the Lipschitz
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Figure 12: a) Third order polynomial ramp; b) the corresponding wavelet trans-
form (solid line) and its approximation via a symmetric shape (dotted line).

order of the corresponding singularity [11]. The amplitude decay of its atom
maximum is O(s+1=2). This drawback entails the introduction of a larger
vocabulary of atoms shapes, leading to the use of a matching pursuit [13]
algorithm for selecting the best atom.

The problem can be overcome by modulating the decay along scales of
an only symmetric atom. More precisely, we de�ne a general atom G(u; s)
as follows:

G(u; s) = s�1F (t0; u; s); (24)

where F (t0; u; s) is de�ned in (11). This way, the atom amplitude is mod-
ulated in agreement with the decay of the analyzed singularity. Its evolution
law will be:

Gs =
t0 � u

s
Gu +

 + 1=2

s
G; (25)

while its maximum trajectory is

_u = �t0 � u

s
:

If the initial condition is u(1) = t0, then we have the same result for the
single symmetric atom.
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Figure 13: Top: Piecewise polynomial signal composed of three parts (with two
singularities) whose orders are respectively 2nd; 1st and 3rd. Bottom: Its modulus
maxima trajectories (solid lines) and trajectories of modulus maxima of symmetric
atoms used for their approximation (dashed) (left). Decays of the �rst (solid) and
second (dashed) original singularity of the signal in a) and the one using atoms
approximation (dotted) (right). The problem of the decay deviation can be solved
using the generalized atom in (24).
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Also in this case, we can consider the interaction between two atoms,
centered at t1 and t2, and having Lipschitz coeÆcients 1 and 2. Hence,

ws =
t� u

s
wu +

w

2s
+
1 + 2
2s

w+
t2 � t1
2s

(w(2)
u �w(1)

u ) +
2 � 1
2s

(w(2)�w(1));

and

_u = �t� u

s
�
�
t2 � t1
2s

�
w(2)
uu � w(1)

uu

wuu
�
�
2 � 1
2s

�
w(2)
u � w(1)

u

wuu
;

where w(k)
u and w(k)

uu ; k = 1; 2, are �rst and second order partial deriva-
tives with respect to u of k�th atom, i.e.

w(k)
u = �ks

k� 1

2

Z +1

zk
 (y)dy;

w(k)
uu = �ks

k� 3

2 (zk):

It is easy to verify that when 1 = 2, we �nd again (20) and (21).
For N atoms it trivially follows

ws =
t� u

s
wu +

1 + 2
PN

k=1 k
2s

w +
1

s

NX
k=1

dkw
(k)
u +

1

s

NX
k=1

kw
(k); (26)

where dk = tk � t; k = 1; : : : ; N , and

_u = �t� u

s
� 1

s

PN
k=1 dkw

(k)
uu

wuu
� 1

s

PN
k=1 kw

(k)
u

wuu
; (27)

The solution of the (27) is then determined by the initial conditions
ftk; �k; kg1�k�N , which respectively are the locations, the slopes and the
Lipschitz exponents of atoms at s = 1. This is an important result in terms
of compaction of information.

3.3 Estimation of parameters

In the following, we briey give the algorithm for estimating both slopes
�k and growing exponents k of the atoms. At scale s = 1, it is possible to
estimate just �k, since they are not a�ected by the Lipschitz order k. On the
contrary, the algorithm for getting the atomic representation in [1, 2] at s 6= 1

24



gives weights �k(s) which also account for the decay, i.e. �k(s) = �k(1)s
k�1.

Hence, we can estimate the decays k by solving (25) in a suitable interval
[1; 1 + �s]. �s has to be quite small for guaranteeing that the interference
between atoms does not still a�ect the locations of their maxima. Under this
assumption, each atom can be considered isolated and then the equation (25)
can be solved for each of them, yielding

G(k)
s =

k + 1=2

s
G(k)

with the following initial condition G(k)(u(1); 1) = �kF (t0; t0; 1).
Hence,

G(k) = C0s
k+1=2;

that is

�k(s)s
p
s = �k(1)s

k+1=2;

and then

k = logs(�k(s)=�k(1)) + 1: (28)

4 Denoising

The atoms based approximation improves the sparsity of the wavelet repre-
sentation, since each atom models a set of coeÆcients. This property has
been successfully exploited in de-noising [1] and allows to overcome some of
the limits of standard approaches, like thresholding and attenuation. In fact,
the former retains those coeÆcients whose value over-exceeds a given thresh-
old, while put to zero the remaining ones. Even if this operation eliminates
most of the noise, it also suppresses signi�cant clean information. On the
other hand, attenuation based approaches require a good prediction of the
original information for tuning �lter coeÆcients.

The peculiarity of the atomic representation is the modelling of all the
coeÆcients in the atom domain while attenuating the noisy ones. In fact,
atoms weights are estimated in the least squares by imposing a function
model (see [1]). This operation obviously regularizes noisy data.
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Even if WISDOW algorithm provides satisfying results in de-noising, it
reveals some limits. The interference between atoms signi�cantly a�ect the
estimation of each single slope and the corresponding location. In fact, it
is diÆcult to exactly separate each single contribution when two atoms are
very close. Moreover, annoying spikes can a�ect the recovered signal since
high amplitude noisy coeÆcients can be confused with real atoms.

The evolution laws, proposed in the previous section, allow to improve
these results. In fact, they enable to separate atoms contribution at a �xed
scale, yielding a better estimation of their weights. Therefore, for each do-
main of estimation we can predict how many contributions have to be con-
sidered along with their locations. The building of maxima chains enables
to use many scale levels in the decomposition without loosing important in-
formation. In fact, at coarsest scales the noise attens since its negative
Lipschitz order  [12] while the estimation domains become wider, since the
dilation property of the wavelet transform. It turns out that the least squares
are more precise. It is worth to further outlining that atoms decay allows to
discard those coeÆcients dominated by noise, since their negative .

4.1 The Algorithm for noisy signals

In this section the algorithm for restoring a noisy signal g is described in
detail.

Let us consider an overcomplete wavelet decomposition [11] of g. The
overcomplete representation is employed to avoid problems due to decima-
tion. In fact, this operation unavoidably causes distortions of the shape in
Fig. 2. In particular, the phase of the decimation (even or odd) di�erently
a�ects the symmetry of the atom and then it becomes impossible to draw
modulus maxima trajectories.

Hence

1. Perform the over-complete wavelet decomposition up to J th scale level.

2. Perform the continuous wavelet transform on g at scales s 2 [1; 2] using
the step �s = :05.

3. Estimate the parameters ftk; �k; kg using the algorithm for atoms es-
timation in [1] for estimating �k and tk at scale s = 1 and (28) for
getting the corresponding decays.
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4. Eliminates atoms having k < 0.

5. Compute atoms trajectories by solving (27) using a 4th order Runge
Kutta method and extract the solution at dyadic scales s = 2j; j =
1; : : : ; J .

6. For each maximum, sorted in decreasing order with respect to their
amplitude, at scale s = 2j; j = 1; : : : ; J , apply the algorithm for �k

estimation [1, 2]. The data to use in the least squares estimation are
weighted proportionally to the ratio between the analysed maximum
and the ones in its cones of inuence, which have been predicted by
the law.

7. Invert the overcomplete wavelet decomposition.

It is worth outlining that the estimation of k depends on the estimation
of the corresponding slope �k. The better �k estimation the more faithful k
value. To this aim we can iterate the algorithm used for slopes estimation at
step 3 of the algorithm. More precisely, if E(u; s) is the error for the atomic
approximation at a �xed scale s, we can iterate the decomposition algorithm
on it and combine the results with the ones found at the previous step. This
iteration improves the �nal result.

5 Some experimental results

The denoising algorithm has been tested on several signals an images. As
regards, images they are split into independent mono-dimensional signals. In
fact, the proposed evolution laws are de�ned just for the 1D case. Nonethe-
less, even using this approximation results are very satisfying and approach
the most e�ective denoising techniques.

A biorthogonal wavelet 3/9 associated to an over-complete decomposition
has been adopted in all tests. Four scale levels are used for the decomposition
and the integration step h = 0:05 has been selected for solving the ode in the
step 5 of the denoising algorithm.

The modi�edWISDOW has been compared with some classical denoising
algorithms, such as soft [5] and hard thresholding [6] and Wiener �ltering
[11], as shown in Fig. 14 and in Table 4.1. The piecewise polynomial signal,
as in chap. 10 of [11], has been chosen for comparing both theoretical and
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noisy hard soft Wiener Modi�ed

signal thresholding thresholding �lter WISDOW

20.39 26.98 24.25 24.06 32.38
25.08 30.45 27.34 29.48 34.39
28.03 33.44 29.70 32.65 35.49

Table 1: Piecewise polynomial test signal (Fig. 14): a comparison between
the proposed model (modi�ed WISDOW) and some classical approaches for
denoising in terms of SNR (Signal to Noise Ratio) values. Wiener �lter has
been implemented using the Matlab function wiener2.

experimental results. In fact, it is composed of jump discontinuities and
therefore, it is suitable for testing the interference of singularities, since each
discontinuity point is modelled as superimposition of two or more elementary
atoms.

It is worth outlining that the atomic representation allows us to also
predicts coeÆcients whose value is under the adopted threshold. That is
why ripples around discontinuity points are strongly reduced. This holds
even in severe noisy conditions.

WISDOW has also been compared with some of the most recent and
e�ective approaches for image de-noising. 512 � 512 � 8 bits Lena image
has been chosen as test image (Fig. 15a) and results have been compared
in terms of PSNR (Peak Signal to Noise Ratio). Similar results have been
achieved on the several test images used in the experiments.

Experimental results show that the proposed denoising algorithm outper-
forms the most e�ective wavelet based denoising approaches. In particular,
Fig. 16 compares the proposed model with the gaussian mixture estimator
presented in [15], the adaptive bayesian thresholding using context modelling
contained in [3] and the local Wiener �ltering using elliptic directional win-
dows for di�erent subband in [16]. In fact, evolution law establishes a precise
link between corresponding coeÆcients at di�erent scales and allows us to
well manage the interference between singularities even at coarser scales.
This entails an almost faithful reconstruction of the original signal, avoiding
constraints on the minimum distance between them, as in [7].

For a visual evaluation of the results, in Fig. 15c the denoised Lena image
is shown (noise standard deviation is � = 20).
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Figure 14: Piecewise polynomial signal: (a) Original signal (b) Noisy Signal (SNR
= 20.37 db). (c) Hard-thresholded signal (SNR = 26.88 db). (d) Soft-thresholded
signal (SNR = 23.93 db). (e) Wiener �lter estimation (SNR = 24.18 db). (f)
modi�ed WISDOW estimation (SNR = 32.38 db).
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Figure 15: (a) Original Lena image (512 � 512 � 8bits); (b) Noisy image (PSNR
= 22.06 db). (c) Denoised Lena image using the proposed model (PSNR = 32.75
db).
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Figure 16: PSNR values versus noise variance for [15], [3], [16] and modi�ed
WISDOW.
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6 Conclusions

In this paper a model for de-noising signals and images has been proposed.
It is based on the de�nition of the atomic representation of the wavelet trans-
form of a generic function. Each atom is associated to the wavelet response
to a singularity point in the original signal.

It has been proved that this kind of representation is able to exploit both
inter- and intra-scale dependencies of wavelet coeÆcients by reducing the
redundancy of information. In particular, the evolution law through scales for
the atoms is provided and their interactions have been investigated. All these
properties make the atomic representation a powerful tool for de-noising even
under severe noise conditions. The quality of the restored signals is greatly
improved, since atoms strongly reduce annoying ripples around discontinuity
points, according to the model. Several comparative studies show that it is
able to approach and outperform the more recent wavelet based techniques
for de-noising.

References

[1] V. Bruni and D. Vitulano, \Wavelet based Signal De-noising via Simple
Singularities Approximation, " to appear in Signal Processing Journal
Elsevier Science.

[2] V. Bruni and D. Vitulano, "Image and Signal Denoising in a Fixed
Wavelet Basis", IAC Report, CNR, No. 32, January 2004.

[3] S.G. Chang, Bin Yu and M. Vetterli, Spatially Adaptive Thresholding
with Context Modeling for Image Denoising, IEEE Transactions on Im-
age Processing, Vol. 9, No. 9, pp. 1522-1530, September 2000.

[4] M. S. Crouse, R. D. Nowak and R. G. Baraniuk, Wavelet-based Statisti-
cal Signal Processing using Hidden Markov Models, IEEE Transactions
on Signal Processing, Vol. 46, No. 4, pp. 886-902, April 1998.

[5] D. L. Donoho, Denoising by soft thresholding, IEEE Transactions on
Information Theory, Vol. 41, No. 3, pp. 613-627, May 1995.

[6] D. L. Donoho and I. M. Johnstone, Ideal Spatial Adaptation via Wavelet
Shrinkage, Biometrika, Vol. 81, pp. 425-455, 1994.

32



[7] P.L. Dragotti and M. Vetterli, Wavelet Footprints: Theory, Algorithms
and Applications, IEEE Transactions on Signal Processing, Vol. 51,
No. 5, pp. 1306-1323, May 2003.

[8] L. C. Evans, Partial Di�erential Equations, Graduate Studies in Math-
ematics, Vol. 19, American Mathematical Society, 1999.

[9] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd ed., Pren-
tice Hall Inc., 2002.

[10] S. Ja�ard, Y. Meyer and R. D. Ryan, Wavelets: Tools for Science and
Technology , SIAM 2001.

[11] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998.

[12] S. Mallat and W.L. Hwang, Singularity Detection and Processing with
Wavelets, IEEE Transactions on Information Theory, Vol. 38, No. 2,
March 1992.

[13] S. Mallat and Z. Zhang, Matching Pursuits with Time Frequency Dic-
tionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12, pp.
3397-3415, December 1993.

[14] S. Mallat and S. Zhong, Characterization of Signals from Multiscale
Edges, IEEE Trans. On Pattern Analysis Machine Intelligence, Vol. 14,
pp. 710-732, 1992.

[15] J. Portilla, V. Strela, M. Wainwright and E. Simoncelli, Image Denois-
ing using Scale Mixtures of Gaussians in the Wavelet Domain, IEEE
Transactions on Image

[16] P. L. Shui, " Image Denosing Algorithm via Doubly Local Wiener Fil-
tering with Directional Windows in Wavelet Domain" IEEE Signal Pro-
cessing Letters, Vol. 12, No. 10, pp. 681-684, October 2005.

33


