
MEPI’s Complexity

Without Noise

In the following we will denote addition, multiplication, division and logical compari-
son respectively with a,m, d and c. Considering just the component x and by omitting
arguments, eq. (8) of the paper can be rewritten as:

dx = −P atan
(
Im(B̂b̂∗0)

Re(B̂b̂∗0)

)
.

In fact, by multiplying both members of eq. (7) of the paper by the quantity b̂∗0
|b̂0|2 and

by extracting their phase we have,

dx = −P atan

Im(B̂b̂

∗
0

|b̂0|2)

Re(B̂b̂
∗
0

|b̂0|2)

 .

Since |b̂0|2 (as well as K) is a real number and it is common to the numerator and
denominator of atan argument, it can be omitted in the following computation.

By exploiting the property of complex numbers it holds

Im(B̂b̂∗0) = Re(B̂)Im(b̂∗0) + Im(B̂)Re(b̂∗0)

Re(B̂b̂∗0) = Re(B̂)Re(b̂∗0)− Im(B̂)Im(b̂∗0). (1)

Since, Im(b̂∗0) = −Im(b̂0), Re(b̂∗0) = Re(b̂0), Im(B̂) = Im(b̂0) + Im(
∑K−1
k=1 b̂k) and

Re(B̂) = Re(b̂0) +Re(
∑K−1
k=1 b̂k), eqs. (1) become

Im(B̂b̂∗0) = −Re(b̂0)Im(b̂0)−Re(
K−1∑

k=1

b̂k)Im(b̂0) + Im(b̂0)Re(b̂0)+

+Im(
K−1∑

k=1

b̂k)Re(b̂0) = Im(
K−1∑

k=1

b̂k)Re(b̂0)−Re(
K−1∑

k=1

b̂k)Im(b̂0)

Re(B̂b̂∗0) = (Re(b̂0))2 +Re(
K−1∑

k=1

b̂k)Re(b̂0) + (Im(b̂0))2 + Im(
K−1∑

k=1

b̂k)Im(b̂0).

Hence, for K = 2, i.e. B̂ = b̂0 + b̂1, the computation of atan argument, in terms of b̂0
and b̂1, requires 6 ms, 4 as and 1 d.

For an M×M block, the computation of atan requires log2(M/2)+1 cs: one to determine
the sign of the motion component, the remaining log2(M/2) to determine its absolute value
through the search in a binary tree (built once for all). In fact, the precomputed values,
corresponding to all the allowed integer shifts for an M × M block (divided by P), are

1

Figure 1: The tree built for computing atan for a 16 × 16 block. Nodes labels are the left
extrema (divided by P) of the intervals centered on the admissible values. The dashed lines
before leaves show that the tree recalled for the computation of operations is composed just
of the solid part: the comparisons at the last level (of the solid part) of the tree lead to the
admissible motion values (dashed leaves).

M/2 (i.e. half of the block dimension). It is the largest shift value that still guarantees a
comparison among aligned blocks for motion estimation. The nodes of the tree contain the
left extrema of the intervals (as happens in quantization) whose center is the shift value (i.e.
dx/P). Fig. 1 shows the tree for a 16 × 16 block: the allowed integer motion values are
dx = 0, 1, 2, .., 7 while P = (2M − 1)/((K − 1)πωx) = 4.9338 for ωx = 1 and K = 2.

The computation of −P requires 1 m, 1 a and 1 d.
With regard to b̂0(ωx, 0), by exploiting the separability of the Fourier transform, M(M−

1) as are required for the sum along columns (or rows) plus the operations required by the
second coefficient of the 1D FFT of the resulting ’sum’ signal. The FFT of the sum signal
with length M can be computed by exploiting the symmetry of cos function in the unitary
circle.

More precisely, let {ak}0≤k≤M−1 be the sum signal. Its FFT at frequency value ω = 1 is

â(1) =
M−1∑

k=0

ake
−i 2πk

M

and then

Re(â(1)) =
M−1∑

k=0

akcos(
2πk
M

)

Im(â(1)) =
M−1∑

k=0

aksin(
2πk
M

).

Let us first analyze the Re component (note that â(1) = b̂0(1, 0)). The distinct absolute
values of cosine function are the ones that are defined in the first quadrant of the Cartesian

2

plane, i.e. for k = 0, 1, 2....,M/4. In the other quadrants, cosine function just changes its
sign. More precisely, ∀ k = 0, 1, 2....,M/4 we have:

cos(2kπ/M) = −cos(2(M/2− k)π/M)

cos(2kπ/M) = −cos(2(M/2 + k)π/M)

cos(2kπ/M) = cos(2(M − k)π/M).

Hence, Re(â(1)) can be rewritten as follows

Re(â(1)) = (a0 − aM/2)cos(0) +
M/4−1∑

k=1

(
ak − aM/2−k − aM/2+k + aM−k

)
cos(2πk/M)+

+(aM/4 − a3M/4)cos(π/2).

Since cos(0) = 1 and cos(π/2) = 0, the computation of Re(â(1)) requires M − 3 as
and M/4 − 1 ms. With regard to the Im part, we can use the same strategy. In fact,
∀ k = 0, 1, 2....,M/4 we have:

sin(2kπ/M) = sin(2(M/2− k)π/M)

sin(2kπ/M) = −sin(2(M/2 + k)π/M)

sin(2kπ/M) = −sin(2(M − k)π/M).

Then Im(â(1)) can be rewritten as follows

Im(â(1)) = (a0 + aM/2)sin(0) +
M/4−1∑

k=1

(
ak + aM/2−k − aM/2+k − aM−k

)
sin(2πk/M)+

+(aM/4 − a3M/4)sin(π/2).

Let us now consider the quantity
(
ak + aM/2−k − aM/2+k − aM−k

)
.

It can be written as
(
ak − aM/2+k

)− (aM−k − aM/2−k
)
. As it can be observed, the two

quantities
(
ak − aM/2+k

)
and

(
aM−k − aM/2−k

)
have already been computed during the

calculation of the real part, hence it is not necessary to recompute them. It turns out that,
the computation of Im(â(1)) requires M/2− 1 as and M/4− 1 ms.

Moreover, 2 ds are required for the normalization of FFT. The same amount of operations
is required for b̂1(ωx, 0) (or for

∑K−1
k=1 b̂k in case of K > 2). Finally the

∑K−1
k=1 b̂k requires

(K − 2)M2 as.
Considering both x and y direction, the total amount of operations required by the

algorithm is

3

Additions Multiplications Divisions Comparisons
MEPI

without 1054 34 12 8
noise
MEPI
with 1826 303 22 10
noise

Table 1: Number of additions (and subtractions), multiplications, divisions and comparisons
required by MEPI for a 16× 16 block and K = 2. Top without noise, Bottom with noise
in the steps 3.b and 3.c of the algorithm, i.e. when space filling curves are adopted.

(K − 2)M2

︸ ︷︷ ︸
sumofsubsequentframes

+ 4M(M − 1) + 4(M − 3 +M/4− 1 +M/2− 1 +M/4− 1 + 2)︸ ︷︷ ︸
FFTcomputation

+

+ 2(6 + 4 + 1)︸ ︷︷ ︸
atanargument

+ 2(1 + 1 + 1)︸ ︷︷ ︸
constantP

+ 2(log2(M/2) + 1)︸ ︷︷ ︸
atanvalue

that is

(K − 2)M2

︸ ︷︷ ︸
sumofsubsequentframes

+ 4M2 + 4M − 16︸ ︷︷ ︸
FFTcomputation

+

+ 22︸︷︷︸
atanargument

+ 6︸︷︷︸
constantP

+ 2log2(M/2) + 2︸ ︷︷ ︸
atanvalue

that is

(K + 2)M2 + 4M + 2log2(M/2) + 14.

Then, for a block of size M ×M ,

(K + 2) + 4/M + (2/M2)log2(M/2) + 14/M2

operations are required for each pixel.
Hence, for M = 16 and K = 2, 4.3281 operations per pixel are required, while the

complexity is O((K + 2)M2).
A short taxonomy in terms of how many occurrences are required for each kind of oper-

ation is shown in Table I.

With Noise
In case of noise, the error bound in eq. (11) requires 6 as, 3 ds and 8 ms. In fact, |ĉ0|2 =

Re2(ĉ0) + Im2(ĉ0) while |Ĉ|2 = Re2(Ĉ) + Im2(Ĉ) = (Re(ĉ0) +Re(
∑K−1
k=1 ĉk))2 + (Im(ĉ0) +

4

Im(
∑K−1
k=1 ĉk))2. Moreover,

∑K−1
k=1 ck requires (K−2)M2 as, whileRe(ĉ0), Im(ĉ0), Re(

∑K−1
k=1 ĉk)

and Im(
∑K−1
k=1 ĉk) require 2M(M −1)+2(M −3+M/4−1+M/2−1+M/4−1+2) that is

2M(M − 1) + 2(2M − 4), as shown in the previous section. The same amount of operations
is required for the evaluation of ∆2y.

Two cs (with the tolerance value τ) occur in step 3) of the algorithm. In case of step
3.a), we proceed as the case without noise, and then we can compute the motion vector
(dx, dy) through equations (8) and (9) of the paper. Thus, the total amount of operations is

(K − 2)M2

︸ ︷︷ ︸
sumofsubsequentframes

+ 4M(M − 1) + 4(2M − 4)︸ ︷︷ ︸
FFTcomputation

+

+ 2(6 + 3 + 8)︸ ︷︷ ︸
errorbound

+ 2︸︷︷︸
logicalcomparisons

+ 2(6 + 4 + 1)︸ ︷︷ ︸
atanargument

+ 2(1 + 1 + 1)︸ ︷︷ ︸
constantP

+ 2(log2(M/2) + 1)︸ ︷︷ ︸
atanvalue

,

that is

(K + 2)M2 + 4M − 16 + 34 + 2 + 22 + 6 + 2log2(M/2) + 2,

that is
(K + 2)M2 + 4M + 2log2(M/2) + 50.

Hence, for K = 2 and M = 16, in case of step 3.a), 4.4687 operations per pixels are
required.

In the case 3.d), we have the same operations except for the atan computation, since
motion cannot be estimated and it is set to (0, 0).

On the contrary, in case of step 3.b) or 3.c) a space filling curve is introduced for one
direction. It means that the two (for ĉ0 and ĉ1) 1D FFTs on M2 samples (organized along
one of the 2 space filling curves) need 2(2M2−4) operations. Moreover, the computation of
atan is still obtained by searching among all its possible (precomputed) values, corresponding
to all possible shifts, [−M/2 + Mdx,M/2 + Mdx] in step 3.b) (or [−M/2 + Mdy,M/2 +
Mdy] in step 3.c)); the number of comparisons is still log2(M/2) + 1. More precisely,
in case of step 3.b) the component dx is computed using the 2D algorithm while dy is
unknown. Nonetheless, for each value of dx, i.e. −M/2,−M/2+1, ...,−1, 0, 1,M/2−1,M/2,
it is possible to precompute the values of atan for each admissible integer value of dy. In
other words, the admissible motion along the adopted space filling curve falls in the range
[−M/2 + Mdx,M/2 + Mdx]. Since Mdx is known and dy must assume integer (positive
and negative) values, log2(M) cs are required for the search in the binary tree. Notice that
log2(M) = log2(M/2) + 1 since the tree now contains both negative and positive values.

Summing up, in case of step 3.b) or 3.c), the total amount of operations is then

(K − 2)M2

︸ ︷︷ ︸
sumofsubsequentframes

+ 4M(M − 1) + 4(2M − 4)︸ ︷︷ ︸
FFTcomputation

+ 2(6 + 3 + 8)︸ ︷︷ ︸
errorbound

+ 2︸︷︷︸
logicalcomparisons

+

+ 2(2M2 − 4)︸ ︷︷ ︸
FFTcomputationSFC

+ 2(6 + 4 + 1)︸ ︷︷ ︸
atanargument

+ 3 + 4︸ ︷︷ ︸
constantP

+ 2(log2(M/2) + 1)︸ ︷︷ ︸
atanvalue

,

that is

5

(K + 6)M2 + 4M + 2log2(M/2)− 16 + 34 + 2− 8 + 22 + 7 + 2

and then
(K + 6)M2 + 4M + 2log2(M/2) + 43.

It turns out that in case of step 3.a) or 3.d) of the algorithm the total amount of operations
per pixel is

(K + 6) + 4/M + (2/M2)log2(M/2) + 43/M2,

while its complexity is O((K + 6)M2).
For K=2 and M=16, it corresponds to 8.4414 operations per pixel.

6

