

Spatial Pooling for Image Quality Assessment

Jensen Shannon divergence as reduced reference IQA metric

A Novel Spatial Pooling Technique for Image Quality Assessment based on Luminance-Contrast Dependence

Motivation

Image Luminance and Contrast show: *independence* around fixation points in *natural* image *components* highly *negative correlation* for *artificial* image *components*

A novel and effective pooling technique for SSIM

SSIM correlation with Mean Opinion Score (MOS) increases up to 8.3%

Goal: pooling method which measures the naturalness of image regions

Main idea: image defects are artificial image components

 \Rightarrow assign a higher weight to image regions that are highly unnatural and then a surprise to the human visual system

SSIM(I,J) =

Method: Luminance and Contrast correlation as features of fixation points

- \checkmark Use the correlation coefficient ρ as a pooling weight for IQA
- Use SSIM (Structural SIMilarity Index) as IQA

$$\implies SSIM_{\rho} = \frac{\sum_{x=1}^{n} \sum_{y=1}^{m} SSIM(x,y)(1-\rho(x,y))}{\sum_{x=1}^{n} \sum_{y=1}^{m} (1-\rho(x,y))}$$

Why Luminance and Contrast correlation?

in the early vision eye measures local *luminance mean* and *contrast*:

light adaptation (in the retina) and contrast gain (starts in the retina):

two rapid mechanisms that control the gain of neural responses

- Low correlation of luminance mean and contrast in natural images
- Negative correlation of luminance mean and contrast in artificial images
- Fixation points change according to both image content and distortion kind
- Humans are attracted by the most unnatural parts of the image

Why SSIM?

- dependent on local luminance mean and contrast
- straightforward spatial pooling and computationally efficient
- easily embeddable in image and video processing applications
- gives importance to the modification of image structures to which HVS is sensitive

Cosine correlation coefficient

$$\rho_{cos}(x,y) = \frac{\sum_{(x,y)\in\Omega} \mu(x,y) C(x,y)}{\sqrt{\sum_{(x,y)\in\Omega} \mu^2(x,y)} \sqrt{\sum_{(x,y)\in\Omega} C^2(x,y)}}$$

It measures how "orthogonal" are luminance and contrast vectors

Masked noise

 ρ_{cos}

Relation with correlation coefficient

 $\rho_{cos} = \frac{\|\mu\|_1 \, \|C\|_1}{\|\mu\|_2 \, \|C\|_2} + \rho \sqrt{\left(1 - \frac{\|\mu\|_1^2}{\|\mu\|_2^2}\right) \left(1 - \frac{\|C\|_1^2}{\|C\|_2^2}\right)}$

$$\begin{split} \rho &= 0 \not\Rightarrow \rho_{cos} = 0 \\ \text{If } \rho_{cos} \text{ approaches } 0 \Rightarrow \rho < 0 \text{ with high probability} \\ & (a \text{ given quantity is subtracted from the } 1^{\text{st}} \text{ term}) \end{split}$$

 ρ_{\cos} is able to differentiate positive and negative correlations: ρ_{\cos} is more consistent with the perception of masked noise: less evident at the bottom of the image than near the contours of the houses or the lighthouse

Some results

Correlation with the Mean Opinion Score (MOS)

T		°[1	-1	1
5	27	5-	7	5	3
4	1	4	-	4	1
ł	1	3	+	3	
1		2	1	2	1
1	*	1	1 + + + +	1 1	1
4			144		T.
05	. 1	'n	0.5	1 0	05

	5 0	1 00	04 1	0 05	- Co	Comparisons with existing IQA				
correlation with MOS	DB SSIM		$SSIM_{\rho}$ $SSIM_{cos}$		VIF FSIM		VSNR	$SSIM_{\rho}$ (from original		
Pearson	TID	0.773	0.795	0.835	0.808	0.874	0.682	0.746		
Coeff	LIVE	0.945	0.948	0.954	0.960	0.961	0.923	0.946		
coen.	CSIQ	0.861	0.890	0.870	0.928	0.912	0.800	0.888		
Sucarman	TID	0.775	0.795	0.838	0.749	0.881	0.705	0.780		
Spearman	LIVE	0.948	0.952	0.958	0.964	0.965	0.927	0.949		
coen.	CSIQ	0.876	0.904	0.879	0.919	0.924	0.811	0.901		
Kendall	TID	0.577	0.595	0.644	0.586	0.695	0.534	0.582		
Coeff	LIVE	0.796	0.805	0.817	0.827	0.836	0.762	0.799		
COCII. Lab	CSIQ	0.691	0.724	0.696	0.754	0.757	0.625	0.720		
0 Q *		0.9	8	0.9		0.9		- 9 [*]		

Spearman correlation with MOS

for each defect class

SSIM	$SSIM_{\rho}$	SSIMcos	FSIM
0.811	0.810	0.829	0.857
0.803	0.801	0.827	0.851
0.815	0.827	0.837	0.848
0.779	0.788	0.811	0.802
0.873	0.875	0.888	0.909
0.673	0.643	0.628	0.746
0.853	0.857	0.881	0.855
0.954	0.957	0.959	0.947
0.953	0.953	0.962	0.960
0.925	0.917	0.929	0.928
0.962	0.964	0.966	0.977
0.868	0.867	0.887	0.871
0.858	0.854	0.866	0.854
0.711	0.712	0.763	0.750
0.846	0.818	0.823	0.850
0.723	0.728	0.734	0.670
0.525	0.615	0.574	0.65
	SSIM 0.811 0.803 0.815 0.779 0.873 0.673 0.853 0.954 0.953 0.925 0.962 0.868 0.858 0.711 0.846 0.723 0.525	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Jensen Shannon divergence as reduced reference IQA metric

Objective: to introduce a **new** and effective Image Quality Assessment (**IQA**) measure able to well correlate with Human Visual System (**HVS**)

Method: use of Information Theory models

topic of interest in Digital CH

JSD and HVS

Perception of distortion as a problem of information transmission rate

Perceived distortion due to:

- degradation process, that generates the distorted image
- human vision, that differently reacts to different kinds of degradation, also according to the scene content

perceived image = mixture of original and degraded information (some degraded info is perceived as clean)

JSD = capacity of a noisy information channel with two inputs giving the output distributions p and q

JSD can be used for image quality assessment using optimal weights !!!

Properties of JSD

- it well correlates with human visual perception
- it simply depends on Shannon entropy of the original and degraded image (reduced reference metric)

- it has a nice and tractable mathematical formulation: more simple to embed in the optimization procedures used for restoration
- it measures the difference between two images in terms of bits, allowing its embedding in coding algorithms (storage and the diffusion of the material in digital libraries)
- suitable for local distortions

Some results: LIVE and TID database

Each class	of defects se	parately		
Distortion	Pearson	Spearman	Kendall	21
Add. Gaussian Noise	0.6728	0.6690	0.4760	1
Different noise in color comp.	0.6299	0.6268	0.4484	
Spatially correlated noise	0.6667	0.6494	0.4587	
Masked noise	0.6552	0.6511	0.4784	
High frequency noise	0.7304	0.7234	0.5022	
Impulse noise	0.5704	0.7628	0.5311	21
Quantization noise	0.3956	0.4232	0.2989	
Gaussian blur	0.8691	0.8798	0.7074	-
Image denoising	0.8249	0.8132	0.6264	
JPEG compression	0.9461	0.9217	0.7320	
JPEG2K compression	0.8764	0.8660	0.7068	
JPEG transmission	0.8331	0.8262	0.6568	5
JPEG2K transmission	0.6776	0.6827	0.4962	
Non eccentricity pattern noise	0.8263	0.8385	0.6241	C
Local blockwise distortion	0.8806	0.8760	0.6815	
Mean shift	0.5131	0.5028	0.3608	
Contrast change	0.6311	0.5645	0.3664	

Distortion Add. Gaussian Noise Different noise in color comp. Spatially correlated noise Masked noise High frequency noise Impulse noise Quantization noise-Gaussian blur Image denoising JPEG compression JPEG2K compression JPEG transmission JPEG2K transmission Non eccentricity pattern noise Local blockwise distortion Mean shift Contrast change

Important for scanning and transmission of archived material

Distortion

Add. Gaussian Noise Different noise in color comp. Spatially correlated noise Masked noise High frequency noise Impulse noise Quantization noise Gaussian blur Image denoising JPEG compression JPEG2K compression JPEG transmission JPEG2K transmission Non eccentricity pattern noise Local blockwise distortion Mean shift Contrast change

Distortion

Add. Gaussian Noise Different noise in color comp. Spatially correlated noise Masked noise High frequency noise Impulse noise Quantization noise Gaussian blur Image denoising JPEG compression JPEG2K compression JPEG transmission JPEG2K transmission Non eccentricity pattern noise Local blockwise distortion Mean shift Contrast change

→Local defects like blotches, scratches, dirt

Distortion

Add. Gaussian Noise Different noise in color comp. Spatially correlated noise Masked noise High frequency noise Impulse noise Quantization noise Gaussian blur Image denoising JPEG compression JPEG2K compression JPEG transmission JPEG2K transmission Non eccentricity pattern noise Local blockwise distortion Mean shift Contrast change

Distortion Add. Gaussian Noise Different noise in color comp. Spatially correlated noise Masked noise High frequency noise Impulse noise Quantization noise Gaussian blur Image denoising JPEG compression JPEG2K compression JPEG transmission JPEG2K transmission Non eccentricity pattern noise Local blockwise distortion Mean shift Contrast change

Comparisons with Reduced Reference metrics

WNISM: it works in the wavelet domain and evaluates the distance between the probability distributions of image wavelet coefficients
RRED: it works in the wavelet domain and measures the entropy value of wavelet coefficients

Distortion	D_{JS}^{α}	RRED	WNISM
Add. Gaussian Noise	0.669	0.702	0.603
Different noise in color comp.	0.627	0.684	0.604
Spatially correlated noise	0.649	0.712	0.599
Masked noise	0.651	0.744	0.633
High frequency noise	0.723	0.794	0.708
Impulse noise	0.763	0.549	0.593
Quantization noise	0.423	0.591	0.619
Gaussian blur	0.880	0.935	0.871
Image denoising	0.813	0.925	0.864
JPEG compression	0.922	0.819	0.834
JPEG2K compression	0.866	0.948	0.935
JPEG transmission	0.826	0.782	0.875
JPEG2K transmission	0.683	0.628	0.691
Non eccentricity pattern noise	0.838	0.277	0.452
Local blockwise distortion	0.876	0.691	0.590
Mean shift	0.503	0.418	0.292
Contrast change	0.564	0.723	0.701

Some results:

JSD as No Reference measure for local degradation

0 98	IB01 IB02	IB03	IBU4				
oh Aroca	1 680	UNITED STATES		1016 1016	10	19 8 8 19 8 10 8	0
e e ^{niss}			linatious u	Img	1-αJSD	α	1-JSD α=.5
0.4			Thelauro	IB01	0.658	0.499	0.658
4			llis expres	IB02	0.812	0.598	0.804
C e 9 9			ur verà co	IB03	0.761	0.680	0.716
	IB05	IB06	IB07 VCIO CO	IB04	0.729	0.503	0.729
0 A ⁶	" this	D silo		IB05	0.733	0.602	0.725
04	and the state	and the state		IB06	0.793	0.499	0.793
o c e		dovi		IB07	0.593	0.558	0.581
e nie	PREsert "	,		IB08	0.541	0.536	0.536
0.9 ⁶	for the particular	cont		IB09	0.612	0.529	0.610
(a.,	IB08	IB0930P1	IB10	IB10	0.163	0.468	0.159

Some results:

JSD as No Reference measure for local degradation

