

Amplitude and Frequency Modulated signals everywhere

Instantaneous Frequency (IF)

Instantaneous Frequency (IF): human gait recognition

Microdoppler signature of human body: walk

IF = speed of human body components

2.5

Time (s)

 $\phi_1'(t)$

 $\phi_2'(t)$

 $\phi_3'(t)$

Leg

Arm

Head

Method: time-frequency analysis

<u>Ridge Curve</u> $(u, \phi'(u))$

g(t)

frequency

time

SPECTROGRAM

SEPARABILITY CONDITION

Method: time-frequency analysis

<u>Ridge Curve</u> $(u, \phi'(u))$

g(t)

frequency

time

SEPARABILITY CONDITION

SPECTROGRAM

REASSIGNED SPECTROGRAM

Method: time-frequency analysis

Main contribution

Definition of local and pointwise methods for TF analysis of frequency modulated multicomponent signals having non separable modes

method

spectrogram evolution law and weakened separability

advantages

✓ non parametric approaches

independency of IF functional class

✓ better modes reconstruction in TF interference (non separable) region
✓ robustness to moderate noise

requirements

modes counting and interference region detection

Method: weak separability

Spectrogram

Solution 250 Solut

150

50

100 1:0

200 250

Time

300

Definition 1[Separability condition] Two modes with IFs $\phi'_1(u)$ and $\phi'_2(u)$ are separated at time location u if

 $|\phi_1'(u) - \phi_2'(u)| \ge \Delta \omega,$

where $\Delta \omega$ denotes the analysis window frequency bandwidth.

Definition 2 [Weakened separability condition] Two modes with IFs $\phi'_1(u)$ and $\phi'_2(u)$ are separated at time location u if there exists at least one curve in \mathcal{C}_{c_1,ϕ_1} , i.e., $\xi_1(u) = \phi'_1(u) + c_1$, such that

Iterative spectrogram reassignment

Classical reassignment

Proposed reassignment

Iterative spectrogram reassignment

robustness to interference

<u>issues</u>:

limited to constant amplitude signals

Weak separability and reassignment Iterative reassignment for **IFs curves resolution** enhancement Weak separability Skeleton-based method for **IFs curves resolution** enhancement