International Journals and Chapters

Some International Journals Papers and Chapters

  • V. Bruni, D. De Canditiis, D. Vitulano, "Phase Information and Space Filling Curves in Noisy Motion Estimation", IEEE Transactions on Image Processing, Vol. 18, No. 7, pp. 1660-1664, July 2009.
  • V. Bruni, B. Piccoli, D. Vitulano, "A Fast Computation Method for Time-scale Signal Denoising", Signal Image and Video Processing, Springer, Vol. 3, pp. 63-83, 2009.
  • V. Bruni, G. Ramponi, A. Restrepo, D. Vitulano, "Context based Defading of Archive Photographs", EURASIP Journal on Image and Video Processing, Special Issue on Image and Video Processing for Cultural Heritage, vol. 2009.
  • Sorrentino A, Parkkonen L, Pascarella A, Campi C and Piana M, Dynamical MEG Source Modeling with Multi-Target Bayesian Filtering, Human Brain Mapping 30.6: 1911-1921, 2009
  • V. Bruni, D. De Canditiis, D. Vitulano, "Local Sorting for Adaptive Signal Regularization", IEEE Signal Processing Letters, vol. 17, no. 7, pp. 691 - 694, July 2010.
  • Pascarella A, Sorrentino A, Campi C and Piana M, Particle filtering, beamforming and multi- ple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms, Inverse Problems and Imaging, 4.1: 169-190, 2010
  • V. Bruni, S. Marconi, D. Vitulano, "Time-scale Atoms Chains for Transients Detection in Audio Signals", IEEE Transactions on Audio, Speech and Language Processing, vol. 18, no. 3, pp. 420 - 433, March 2010.
  • A. Kokaram, D. Vitulano, D. Corrigan, V. Bruni, "Advances in Automated Restoration of Archived Video", invited chapter in Digital Imaging for Cultural Heritage Preservation, CRC Press, 2011.
  • Pascarella A and Sorrentino A, Statistical Approaches to the Inverse Problem, Magnetoencephalography, Elizabeth W. Pang (Ed.), ISBN: 978-953-307-255-5, InTech, 2011
  • Campi C, Pascarella A, Sorrentino A and Piana M, Highly Automated Dipole EStimation, Computational Intelligence and Neuroscience, 982185, 2011
  • V. Bruni, E. Rossi, D. Vitulano, "On the Equivalence between Jensen-Shannon Divergence and Michelson Contrast", IEEE Transactions on Information Theory, vol 58, no. 7, pp. 4278-4288, July 2012.
  • V. Bruni, D. De Canditiis, D. Vitulano, "Time-scale energy based analysis of contours of real-world shapes", Mathematics and Computers in Simulation, Elsevier, vol. 12, p. 2891-2907, 2012
  • V. Bruni, D. Vitulano, "Time Scale Similarities for Robust Image Denoising", Journal of Mathematical Vision and Imaging, vol. 44, no. 1, pp. 52-64, September 2012
  • V. Bruni, E. Rossi, D. Vitulano, A Model for the Restoration of Semi-transparent Defects Based on Lie Groups and Human Visual System, Computer Vision, Imaging and Computer Graphics. Theory and Application, Communications in Computer and Information Science series, Springer, vol. 0359, pp. 354-368, 2013, selected paper in VISAPP 2012.
  • V. Bruni, A. Crawford, A. Kokaram, D. Vitulano, "Semi-transparent Blotches Removal from Sepia Images Exploiting Visibility Laws", Signal Image and Video Processing, Springer, vol. 7, no. 1, pp. 11-26, DOI: 10.1007/s11760-011-0220-1, Jan. 2013.
  • V. Bruni, E. Rossi, D. Vitulano, "Jensen Shannon Divergence for Visual Quality Assessment", Signal Image and Video Processing, Springer, Special Issue on Human Vision and In formation Theory, Vol. 7, No. 3, May 2013
  • time-scale isolevel curves, Signal Processing, Elsevier Science, vol. 93, no. 4, p. 882-896, April 2013
  • D. De Canditiis “A frame based shrinkage procedure for fast oscillating functions” published Computational Statistics & Data Analysis (2014) 75, PAG 142-150
  • Manca F, Capelli G, La Vigna F, Mazza R, Pascarella A, Wind-induced salt-wedge intrusion in the Tiber river mouth (Rome-Central Italy), Environmental Earth Sciences, 1-13, 2014
  • V. Bruni, E. Rossi, D. Vitulano, Automated Restoration of Semi-Transparent Degradation via Lie Groups and Visibility Laws, Mathematics and Computers in Simulation, Elsevier Science, vol. 106, issue C, pp. 109-123, 2014.
  • V. Bruni, D. De Canditiis, D. Vitulano, "Speed up of Video Enhancement based on Human Perception", Signal Image and Video Processing, Springer, vol. 8, pp. 1109-1209, 2014.
  • V. Bruni, D. Vitulano, An Improvement of Kernel-based Object Tracking based on Human Perception, IEEE Transactions on Systems, Man and Cybernetics: Systems, vol. 44, no. 11, pp. 1474-1485, Nov. 2014.
  • V. Bruni, D. Vitulano, Methods and perspectives in face tracking based on human perception, invited chapter in "Face recognition in adverse conditions94, IGI Global 2014.
  • V. Bruni, D. Vitulano, A robust perception based method for iris tracking, Pattern Recognition Letters, Elsevier Science, vol. 57, pp. 74-80, May 2015.
  • Calvetti D, Pascarella A, Pitolli F, Somersalo E and Vantaggi B, A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning, Inverse Problems, 31(12), 125005, 2015
  • M. C. Basile, V. Bruni, F. Buccolini, D. De Canditiis, S. Tagliaferri, and D. Vitulano, "Automatic and Noninvasive Indoor Air Quality Control in HVAC Systems", Journal of Industrial Mathematics, Hindawi, vol. 2016, 2016.
  • Pascarella A, Todaro C, Clerc M, Serre T and Piana M, Source modeling of ElectroCorticoGraphy (ECoG) data: Stability analysis and spatial filtering, Journal of Neuroscience Methods, 263,134-144, 2016
  • V. Bruni, D. Vitulano, An entropy based approach for SSIM speed up, Signal Processing, Elsevier Science, vol. 135, pp. 198-209, June 2017
  • Hincapié, A. S., Kujala, J., Mattout, J., Pascarella, A., Daligault, S., Delpuech, C., ... & Jerbi, K. (2017). The impact of MEG source reconstruction method on source-space connectivity estimation: a comparison between minimum-norm solution and beamforming. Neuroimage, 156, 29-42.
  • Alamian, G., Hincapié, A. S., Pascarella, A., Thiery, T., Combrisson, E., Saive, A. L., ... & Jerbi, K. (2017). Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges. Clinical Neurophysiology, 128(9), 1719-1736
  • Pascarella, A., & Pitolli, F. (2018). An inversion method based on random sampling for real-time MEG neuroimaging. Communications in Applied and Industrial Mathematics, 10(2), 25-34
  • Combrisson, E., Vallat, R., O'Reilly, C., Jas, M., Pascarella, A., Saive, A. L., ... & Jerbi, K. (2019). Visbrain: a multi-purpose GPU-accelerated open-source suite for multimodal brain data visualization. Frontiers in Neuroinformatics, 13, 14
  • Calvetti, D., Pascarella, A., Pitolli, F., Somersalo, E., & Vantaggi, B. (2019). Brain activity mapping from MEG data via a hierarchical Bayesian algorithm with automatic depth weighting. Brain topography, 32(3), 363-393
  • Campi, C., Pascarella, A., & Pitolli, F. (2019). Less Is Enough: Assessment of the Random Sampling Method for the Analysis of Magnetoencephalography (MEG) Data. Mathematical and Computational Applications, 24(4), 98
  • V. Bruni, M. Tartaglione, D. Vitulano, A fast and robust spectrogram reassignment method, Mathematics, MDPI, vol. 4 no. 4, 2019
  • V. Bruni, M. Tartaglione, D. Vitulano, A signal complexity-based approach for AM?FM signal modes counting, Mathematics MDPI, 8(12), pp. 1?33, 2020
  • V. Bruni, M. Tartaglione, D. Vitulano, Radon spectrogram-based approach for automatic IFs separation, Eurasip Journal on Advances in Signal Processing, Springer, 13, 2020
  • V. Bruni, M. Cotronei, F. Pitolli, A family of level-dependent biorthogonal wavelet filters for image compression, Journal of Computational and Applied Mathematics, Elsevier, vol. 367, 2020
  • V. Bruni, M. Tartaglione, D. Vitulano, An iterative approach for spectrogram reassignment of frequency modulated multicomponent signals, Mathematics and Computers in Simulation, Elsevier, vol. 176, pp. 96-119, 2020
  • V. Bruni, L. Della Cioppa, D. Vitulano, An Automatic and Parameter-Free Information-Based Method for Sparse Representation in Wavelet Bases, Mathematics and Computers in Simulation, Elsevier, vol. 176, pp. 73-95, 2020
  • Alamian, G., Pascarella, A., Lajnef, T., Knight, L., Walters, J., Singh, K. D., & Jerbi, K. (2020). Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia. NeuroImage: Clinical, 28, 102485
  • Meunier, D., Pascarella, A., Altukhov, D., Jas, M., Combrisson, E., Lajnef, T., ... & Jerbi, K. (2020). NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines. NeuroImage, 219, 117020
  • Calvetti, D., Johnson, B., Pascarella, A., Pitolli, F., Somersalo, E., & Vantaggi, B. (2021). Mining the Mind: Linear Discriminant Analysis of MEG source reconstruction time series supports dynamic changes in deep brain regions during meditation sessions. Brain topography, 34(6), 840-862
  • Chiara Sorgentone, Petia Vlahovska; Pairwise interactions of surfactant-covered drops in a uniform electric field; Physical Review Fluids 6, 053601 (2021)
  • Chiara Sorgentone, Jeremy I. Kach, Aditya S. Khair, Lynn M. Walker, Petia Vlahovska; Numerical and asymptotic analysis of the three-dimensional electrohydrodynamic interactions of drop pairs; Journal of Fluid Mechanics, vol. 914, A24, Special JFM volume in celebration of the George K. Batchelor centenary (2021)
  • Casas, A. S. H., Lajnef, T., Pascarella, A., Guiraud-Vinatea, H., Laaksonen, H., Bayle, D., ... & Boulenger, V. (2021). Neural oscillations track natural but not artificial fast speech: Novel insights from speech-brain coupling using MEG. NeuroImage, 244, 118577
  • V. Bruni, M. Tartaglione, D. Vitulano, Coherence of PRNU weighted estimations for improved source camera identification, Multimedia Tools and Applications, Springer, 2021
  • V. Bruni, M. Tartaglione, D. Vitulano, A pde-Based Analysis of the Spectrogram Image for Instantaneous Frequency Estimation, Mathematics MDPI, 9(3), pp. 1?33, 2021
  • V. Bruni, D. Vitulano, A fast preprocessing method for micro-expression spotting via perceptual detection of frozen frames, Journal of Imaging MDPI, 7(4), 2021
  • Tanga, V. Giliberti, F. Vitucci, D. Vitulano, V. Bruni, A. Rossetti, G. C. Messina, M. Daniele, G. Ruocco, M. Ortolani, Terahertz scattering microscopy for dermatology diagnostics, JPhys Photonics, 3(3), 2021
  • Ludvig af Klinteberg, Chiara Sorgentone, Anna-Karin Tornberg; Quadrature error estimates for layer potentials evaluated near curved surfaces in three dimensions; Computers and Mathematics with Applications (accepted, 2022)
  • Francesca Pitolli, Chiara Sorgentone, Enza Pellegrino; Approximation of the Riesz–Caputo derivative by cubic splines; Algorithms (accepted, 2022)
  • V. Bruni, M.L. Cardinali, D. Vitulano, A Short Review on Minimum Description Length: An Application to Dimension Reduction in PCA, MDPI Entropy 2022

About Us

DIPLab (Digital Information Processing Laboratory) is a Laboratory devoted to digital information processing, with particular reference to signal, image and video processing.

Our Contacts

Via Antonio Scarpa 16
00161 Roma (Italy)

(+39) 064976 6633
(+39) 064976 6648